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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 5-4-59E

SOURCE DISTRIBUTION METHOD FOR UNSTEADY ONE-DIMENSIONAL FLOWS WITH
SMALL MASS, MOMENTUM, AND HEAT ADDITION AND SMALL AREA VARIATION

By Harold Mirels

SUMMARY

A source distribution method is presented for obtaining flow per-
turbations due to small unsteady area variations, mass, momentum, and
heat additions in a basic uniform (or piecewise uniform) one-dimensional
flow. First, the perturbations due to an elemental area variation, mass,
momentum, and heat addition are found. The general solution is then
represented by a spatial and temporal distribution of these elemental
(source) solutions. Emphasis is placed on discussing the physical nature
of the flow phenomena.

The method is illustrated by several examples. These include the
determination of perturbations in basic flows consisting of (1) a shock
propagating through & nonuniform tube, (2) a constant-velocity piston
driving a shock, (3) ideal shock-tube flows, and (4) deflagrations in-
itiated at a closed end. The method is particularly applicable for find-
ing the perturbations due to relatively thin wall boundary layers.

INTRODUCTION

Numerous studies have been made of unsteady one-dimensional flows
through ducts with area variation, body forces, mass, and heat addition.
The mos®t general method of hendling such problems is by the method of
characteristics which, for these problems, employs the "Riemann variables."
A full account of this method is given in reference 1.

When the area variation, body forces, and so forth introduce only
small disturbances into an otherwise uniform (or piecewise uniform) basic
flow, the equations of motion can be readily linearized. As is usual
with linear problems, many different methods and viewpoints can then be
used to obtain solutions. One approach is to find first the perturba-
tions associated with an elemental area change, body force, mass, and
heat addition. The general linearized solution of an unsteady cne-
dimensional flow can then be represented by a spatial and temporal



distribution of such elemental solutions. TIhis approach may be termed
a "source distribution method." The advantage of this viewpoint over
more formal methods of solution is that it >ften gives a better physical
insight into the flow processes. A discussion of the source distribu-
tion concept, as applied to one-dimensional unsteady flows, does not
appear to exist explicitly in the current literature. Hence, such a
discussion is presented herein. To emphasize the physical nature of
these flows, the solutions are first deducel from = relatively simple
flow problem. The solutions are then again deduced by formal manipula-
tion of the equations of motion as they apprar in the method of charac-
teristics. The use of these solutions is then illustrated by several

examples.

The source distribution method has been previously applied, by the
author, to find nonuniformities in a shock “;ube due to the unsteady
boundary layer along the shock tube wall (refs. 2 and 3). The present
report may be considered as an extension and elaboration of the method
presented in those reports.

ANALYSIS

A uniform basic flow is assumed to be ¢lightly disturbed by small
area changes, body forces, mass, and heat acditions, which induce un-
steady one-dimensional perturbations. The jerturbations due to an ele-
mental area change, body force, and so fortt are first deduced from a
simple flow problem. The general solution is then expressed as the
superposition of these elemental flows. Firally, the general solution
1s again obtained by a formal linearization of the equations of motion
as they appear in the method of characteristics.

Equations of Moticn

Consider a uniform basic flow through s tube of constant area A.
The uniform fluid properties are denoted by the symbols p, o, T,

u, . . .. (Symbols are defined in appendix 4.) Let perturbations from
those uniform values be denoted by the prefix A so that the net pres-
sure at a point is p + Ap, the net density is p + Ap, . .. The per-

turbations are generally functions of (x,t) so that Ap = Ap(x,t),

Ap = Ap(x,t), and so forth. By assuming that the perturbations arc dus
to small area variation, body forces, mass, and hesat additions, the
equations of motion are:

Continuity:

3 3



Momentum:

AAu du 1 Mp  f

St FUix Yo T (1v)
Energy:

AAs MNs g

St U3 T of (1c)
State:

Ap Ap AT

= R = =0 1d

> "o T (1a)
where

i

o o (02

m(x,t) = mass addition, per unit volume, per unit time

il

AA(x,t) = perturbation of cross-sectional area

£x,t) body force, per unit volume, acting in +x direction

i

q(x,t) = heat addition, per unit volume, per unit time

As(x,t) : CVG%? - Y é%ﬁ = entropy perturbation

The quentities u, f, and g may be referred to as "volumetric sources."

They are, respectively, sources of massl, momentum, and heat. The term
"volumetric" stems from the fact that they are defined on a "per unit
volume" basis.

For a given area variation AA(x,t), the average velocity (normal
to the wall) of a fluid particle at the wall at any point (x,t) is given

by
1 {oma ANA
v = -3 (E—-t + ug—x)

LThe quantity p may be considered as the equivalent volumetric
mass source in a tube of constant area, which induces the same pertur-
bations as a prescribed mass addition m and area variation AA.



where 1 1s the perimeter corresponding tc the cross-sectional area A.
The normal velocity is positive when directed inward. Then, for the case
of area variation (but no external mass addition),

1
Ho= %%-v (2)

This expression is convenient for finding parturbations due to thin un-
steady boundary layers along a constant-area tube. Here, v 1is the ver-
tical velocity at the outer edge of the boundary layer, as computed from
boundary-layer theory. This approach is used in references 2 and 3 to
find nonuniformities in shock tubes due to the wall boundary layer.

Elemental Source Solutions

The quantities u, f, and q were referred to as volumetric sources
since they were defined on a per unit volum: basis. Equivalent quanti-
ties, defined on a per unilt cross-sectional area basis, may be referred
to as "planar sources." For example, plana:- mass, momentum, and heat
sources at x = O can be defined by the re.ations

€ € €
Eslimf bodx ?slimf f dx q = 1lim q dx (3)
€0 Y-¢ €0 vY-e €0 Y-¢
o o g+
where
U= equivalent mass addition at x = 0, per unit A, per unit time
f = body force at x = 0, per unit A, in +» direction
a = heat addition at x = 0, per unit A, per unit time

In general, E, ?, and q can be functions ¢f time. In the present sec-
tion, a simple flow containing planar sources will be considered. The
solution of this flow will then be used to éeduce the flow field induced
by an elemental source.

Assume that planar mass, momentum, and heat sources are blaced at
x =0 at time t = 0 (in an otherwise uniform flow) and that they re-
main at constant strength thereafter. The resulting perturbed flow field
is indicated in figure 1 (for the case where the basic uniform flow is
subsonic). In figure 1(b), line a 1s a downstream propagating acoustic
wave moving with velocity u + a, line b is a contact surface between
two regions of different entropy, moving wita veloeity u (neglecting
perturbation velocities), and line c is an uostream propagating acoustic



wave moving with velocity wu - a. The lines a, b, ¢, and x = O sub-
divide the flow into four regions, 1, 2, 3, and 4. Region 1 is the
original undisturbed uniform flow. The perturbations in regions 2, 3,
and 4 are independent of x and 1.

The magnitude of the perturbations in the various regions can be
found by considering the jump in the perturbatlon quantities across
lines a, b, ¢, and x = 0. The case M< 1 is treated here, while the
case M >1 is treated in appendix B.

Line a. - Line a 1s a downstream propagating acoustic wave. The
acoustic relations then give

Apz = DSAU.Z (4&)
=P
Line b. - The fluid velccity and pressure are continuous across a
contact surface so that
Auz = Aup (5a)
Line c. - Line ¢ is an upstream propagating acoustic wave. The
acoustic relations give
Ap, = -paduy (8a)
- -k
bpy = - % buy (6b)
Line x = 0. - Integrating equations (la) to (lc) across x = 0O

and noting equations (3) give, respectively,

ll(AQS - Ap4) + p(AUS - Au&) = E (78,)
1 T
Apf) /_\ps _(i
198 p - Y p = CVDT (70)

Equation (7c) follows from As; = 0, Asg e, [(tp</ps) - Y(ApS/QB)].



Equations (4) to (7) are nine equations in nine unknowns. The solu-
tion can be expressed as

Apz - ey
- Y T4 £

p _ Z(1 + M)pa (P * o T * ex) (8a)
- Y a9 _ £

- Z(L - M)pa (“ N e za) (8v)

AS —

3
c =2 - T (BC)
v Vpu

All other perturbations are then found dirsctly from equations (4) to (7).

Now, assume that equal and opposite (with respect to the previous
example) planar mass, momentum, and heat sources are placed at x = O
at time t = At (in the same otherwise uniform flow) and that they re-
main at constant strength thereafter. The corresponding t-x diagram
is shown in sketch (a). The lines representing the acoustic waves and

the contact surface are displaced upward b;” an amount At from the cor-
responding lines in figure 1(b). The perturbations in regions 2', 3',
and 4' are equal and opposite to those of ‘he corresponding regions in
figure 1(b).

If the flow fields in figure 1(b) and sketch (a) are linearly super-
posed, the resulting flow (sketch (b)) has zero perturbations everywhere
except between lines a, a'; b, b'; and c, ¢! (since the perturbations in
regions 2, 3, and 4 are equal and opposite to those in regions z2', 3',
and 4'). By using a superscript ( )+ to denote perturbations due to a
downstream propagating acoustic wave, the pressure perturbations between
lines a and a' can be written (from eq. (8¢))



-+

AT T -, 9 , f
p  2(1 + M)pa (H * 3 T + a) (9a)

Also, for this region (from egs. (4)), (aut/a) = (ae*/p) = (&p*/yp). By
denoting the perturbations due to an upstream propagating acoustic wave
by the superscript ( )7, the pressure perturbation between lines c and
¢' can be written (from eq. (8b))

& LS T2 _ £
p  2(1 - M)pa (M oD a> (9v)

Also, for this region (from eqs. (6)), (-au™/a) = (&ap~/p) = (&p~/vp).
Between lines b and b', the velocity and pressure perturbations are zero,
while the entropy perturbation is given by (from eg. (8c))

As q
c,  cypul (9¢)

The corresponding density perturbation is (Ap/p) = -(A@/cp).

A sgimilar development is presented in appendix B for the M > 1
case. The results for Ap+, Ap~, and As are the same as for the M <1
case (e.g., egs. (9)) except that the expression for Ap~ contains the
term (M - 1) for the M > 1 case. Use of |1 - M| in the demonimator
of equation (9b) makes equations (8) applicable for both M <1 and
M>1.

Now, consider sketch (b) in the limit as At - 0. It is then clear
that 2 plansr source at x = 0, t = 0 instantaneously generates a



downstream propagating acoustic wave, an upstream propagating acoustic
wave, and an entropy wave which propagates along the lines x = (u + a)t,
X = (u - a)t, and x = ut, respectively. The strength of these waves is
given by equations (9). The perturbations are zero everywhere except on
these lines.

The results of the previous paragrapl. may be readily generalized to
the case where the planar source is placec. at the arbitrary point x = £,
t = 7 (see sketches (c) and (d)):

M < | M > |

t, T /T
) & l)"’qu’r § Ap Qs
/ AP
€, 1) €, 1)
»X}E -X,€

(c) (d)

The resulting perturbations and the lines along which these perturbations
propagate are then

apt ¥ T4, L
P 2(1 + Mipa cpT a
103
3 rout - Aot ( )
= o
along x =t + (u+ a)(t - 1),
Ap” Y (— q f)
= B+ === - —
2|1l - M|pa - T a
P | le p (10b)
_ YA Yhoo
== T

along x =& + (u-a)(t - 1), and



bs
Cy cvpuT
= :%§£ (Ap = Au = 0) (10c)

along x = & + u(t - 7).

The perturbations are zero everywhere except on these lines. The lines
along which the disturbances propagate are termed "characteristic”

lines. The line along which the entropy wave propagates may also be
referred to as a "particle path" line since the entropy wave is convected
by the stream.

Equations (10) are the elemental source solutions which we had set
out to obtain. From these equations it is seen that U and a generate
upstream and downstream propagating acoustic waves which have the same
sign, whereas T generates upstream and downstream propagating acoustic
waves which have opposite signs. The ratio of the downstream and up-
stream acoustic waves is Apt/Ap” = |1 - M|/(1 + M) for mass or heat
addition and is A@+/A@' = - ‘l - MI/(l + M) for a body force. Thus, the
upstream propagating acoustic wave 1s stronger than the downstream wave
(considering u, q, and T separately) except for M= 0 and M .

As M approaches 1, the value of Ap~ becomes very large (violating
the assumption of small perturbations) and equations (10) become invalid.

General Solution

The perturbations due to an arbitrary spatial and temporal distribu-
tion of volumetric mass, momentum, and heat sources can be found by the
linear superposition of the elemental solutions of equations (10). Again,
use the coincident coordinate systems (E,t) and (x,t) where (&,7) defines
the source location and (x,t) is the point at which the perturbations are
to be found. Note that the volumetric mass source between £ - (d§/2)
and & + (dt/2) is equivalent to a planar mass source of strength
T(g,t) = p(e,7)dé, and so forth. Then, by linear superposition, the net
perturbation at (x,t) due to an arbitrary volumetric source distribution
is given by

op(x,t) _ opt(x,t) | spm(x,t) (11a)
P i P

r Au(x,t) _ AP+(XLt) _ Ap~(x,t)

11b
> 5 - (11b)
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Ao(x,t) _ Ap(x,t) _ 2s(x,t)

5 T o (11c)
AT(x,t) _ Ap(x,t)  2p(x,t)
T = 5 - 5 (114d)
where
. X
= ng’t) T 21 1 M)pa / l}(gJT) + qéifi"rz + f(ia,’f)] Xt d¢  (1le)
o0 =t- e
(x,%) = (0 2(2,1)
Ap- X)t . Y {5) f E,,T
= T M)pa/ I:u(é,'r) + qcpT" - == ] g (36 (110)
x =t
X
As(x,t 1 11g)
: Z(v - cypul / {[q(g’”] —t ﬁ-_é}dg -
-0 YT u

The integrations in equations (lle) to (1llg) add the contributions of
all the sources which contribute to Apt, A>™, and As at (x,t). These
sources lie along the characteristic lines T =t - Efi—g and

X - % .5 indicated in sketches (e) and (f):

T=1% -

The upper limit in equation (11f) is (4w) o' (-») depending on whether
M<1 or M>1. (By using this convention, dt/(1 - M) is ulways posi-
tive, and the absclute value sign is not necded for 1 - M.
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Substitution of equations (11) into equations (1) verifies that they
are indeed the general solution of equations (1). Equatlons (11) could
have been deduced, formally, from equations (1). (This is, in fact, done
in the next section.) The present development was undertaken so as to
bring out more clearly the physical nature of the solution. Equations
(lle) to (11lg) assume that all perturbations are due only to the speci-
fied 4y, g, and f distribution, so that there are no extraneous waves
propagating in the tube. Otherwise, arbitrary functions of x - (u + a)t,
x - (u - a)t, and x - ut (i.e., homogeneous solutions of egs. (1)) would
have to be added to the right sides of equations (1lle) to (llg), respec-
tively. The quantities u, q, and f must approach zero sufficlently
fast, as & approaches 4w, to make the integrals converge. As a result,
the perturbations at x = 4= must be zero for all problems where equa-
tions (11) apply.

If the integrations in equations (lle) to (1lg) are made with respect
to T instead of &, the integrals take on the form (since
at/at = 1/(u+ a) for t=1 - (x - £)/(u+ a) and dt/dag = 1/u for
=1t - (x - E)/u

t r~ -
At (x,t) X (e,7) + A81) , £0E,7) a (12a)
p cp /_m -H ' cpT & Je=x-(u+a) (t-1) ' :
A1 ( (6,5))|
Ap~(x,1) _ X qe,7)  fl&,7
P % /m (60 B - S |

t

. = / {[q(g,T)]gzx_u(t_T)}dT (12¢)

Equations (12) are somewhat simpler than equations (11lc) to (11lg). The
integrations always proceed in the +T direction. Note that the coef-
ficient 1 - M does not appear in equation (12b). Thus, Ap~ does not
become infinite as M -1 (provided u, q, and f approach zero suffi-
ciently fast, as T - -»), and equations (12) are generally applicable
at M=1 as well as M # 1.2 (Egs. (11) are also applicable at M =1
provided dat/(1 - M) is treated as an indeterminate form.)

2Phis contrasts with the earlier result that Ap™ - » as M~ 1
for a planar source (eq. (10b)). This difference between the perturba-
tions due to a planar source and a volumetric source is typical of source
distributions in fluid flow problems. The intensity of the singularity
induced by a source in a fluid flow field decreases when a point source
is replaced by a surface distribution of sources and when a surface dis-
tribution is replaced by a volume distribution.
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Alternate Derivation of General Solution

The general solution obtained in the brevious section is rederived
herein by a formal manipulation of the equations of motion as they appear
in the method of characteristics (ref. 1). The latter employs the
Riemann varisbles P and Q as dependent variables. The Riemann vari-
ables are then related to the dependent variables Apt and ApT.

To solve one-dimensional flows of a perfect gas (with area change,
body forces, mass, and heat addition) by the method of characteristics,
the equations of motion can be written in the form (from eq. (III.d.9)
of ref. 1)

5, P [ 5.5
_a e . __»p =
T u+cpT+a+cI(r-15 Bt (13a)
s , [ 5 s
.2 g9 _£ P -
5t "% |M o T a+cp(Y-ﬂt‘>t (13b)
Ds _ g
Dt~ pT (13¢)
where
a u
P”r-1+§ (134)
a, u
C=r—T7-3 (13e)
5, () 3
+' 3() 3( )
5t 5t (= ar ==~ (13r)
D( ) () o )
Dt - ot T YT (13g)

The quantities P and Q are the Riemann ‘arisbles. (These equal one-
half the values as defined in ref. 1.) Equutions (13) define the varia-
tion of P, Q, and s in the characteristic directions dx/dt =u+ a,
u - a, and u, respectively. A numerical irtegration of these equations
(together with the equations of state) can ihen be obtained by proceed-
ing along the characteristic directions, in small increments, as dis-
cussed in reference 1.

If u, f, and g are small, the equations can be linearized. Again,
by letting the prefix A represent the deperture of a flow variable from
the basic uniform flow, equations (13) becone



13

s)
g B2 As =X 1 .=
Tst|l=z Zetr - | = 20 \H tT Tt 3 (142)
b | b
o5_ |AQ As | '8 q £
TE e T -0 "z M T T s (140)
L b . b
DAs _ q
Dt ~ pT (14c)

Integrating equations (14a) and (14b) along the characteristic directions
gives (for AQ=AP =As =0 at 1t = -n)

- t
P 4 _r a(e,7) f(éﬂl]
Y[a 2eply - 1 e / [H(gﬁ) i °pt T e=x-(u+a) (t-7) -

| P
- |
(152)
- K (£,7)  £(e,7)
A &s _r e i
Y[a Tl - 13 ZD[w [u(g’TM %" ) ]é=x-(u—a>(t-” d
(15b)

The integral of equation (l4c) is the same as equations (llg) or (l2c).
Comparison of equations (15) with equations (12a) and (12b) shows

'rEQE - 2= ] - ol (162)

a = ey (r - 1) P
AQ As Ap~
Y[?? EENGE 1;] = § (16b)

Thus, equations (12) (and egs. (1le) to (1lg)) could have been obtained
by a formal integration of equations (13a) to (13c). Also, the elemental
source solutions can be deduced from equations (15). However, it is felt
that the previous derivation of these equations brings out the physical
nature of the flow.

Equations (16) relate the perturbation of the Riemann variables
AP and AQ to the variables of the previous section (namely Ap+, ApT,
and As). This relation can be deduced directly by a perturbation of
the Riemann variables. Thus, perturbing equations (13d) and (13e) gives
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Y
a

AP( 1 _da lau) 7v)|1ldp As Au
qu‘r(r-la*2a>“2{[rp+c Y—l]ia}

]
o]~
—
[ —|

Apt TAs
P Zcp (Y = l)

(17)

p ch(r = l)

aut YAs
¥ a * ZCP(Y = ﬂ
= (18)
Au” YAs
Tt Zcp(r - 1)

Equations (17) agree with equations (16), as expected. Equations (17)
and (18) provide a physical interpretation for AP and AQ within the
limitation of linearized theory. These eqiations show that for isen-
tropic flow (i.e., As = 0) the local values of yAP/a and 1AQ/a  ex-
actly equal Ap+/p and Ap'/p, respectively. Or, alternately, the local
values of AP and AQ equal Aut and -Au”, respectively. For As % o,
the relation between AP, AQ and Ap', Ap~ (or Aut, Au™) also depends
on the local value of As and, therefore, depends on the thermal history
of the fluid element at the section under -onsideration.

A linearized method of characteristics, employing AP, AQ, and As
as the dependent variables, was developed in reference 4 for finding non-
uniformities in a shock tube (due to the wall boundary layer). The method
of reference 4 can be compared with the pr:sent method as follows. Ref-
erence 4, in effect, integrates equations [13a) to (13c) in the appro-
priate characteristic directions. Since 5 appears on the right side of
equations (13a) and (13b), the solution for AP and AQ 1s coupled with
the energy equation (eq. (13c)) for noniseitropic flows, and all three
equations must be solved simultaneously. n the present method, Apt,
Ap~, and As are the dependent variables. However, the solution for
Ap+ and Ap~ 1is not coupled with the ene-gy equation and can be found
without a knowledge of As. Thus, the solition for Apt and Ap~  is
somewhat simpler than the corresponding so.ution for AP and AQ. In
addition, Apt and Ap”  have a simple phy:iical interpretation, which is
not the case for AP and AQ. For isentropic flow, the two methods be-
come identical (except for notation).



15

APPLICATIONS

The applications of equations (11) and (12) are illustrated by con-
sidering several one-dimensional unsteady flow problems. In particular,
three classes of problems are considered. The first class pertains to
flows wherein the basic (unperturbed) flow extends from x = -» to
X = 4. The second class pertains to flows wherein there are two basic
uniform flows separated by a discontinuity (such as a shock wave, contact
surface, flame front, etc.) that moves with constant speed. The third
class consists of several piecewise uniform basic flows, each separated
by discontinuities moving with constant speed. For the latter class,
attention is focused on cases wherein the discontinuilties are centered.
That is, they all originate at some fixed point, say x =0, t =0. Flow
in an ideal shock tube (assuming the expansion wave has negligible thick-
ness) is an example of a piecewise uniform flow with centered
discontinuities.

Basic Flow Infinite in Extent

The solution of problems wherein the basic flow is infinite in ex-
tent is given directly by equations (11) and (12). Since the physical
nature of this solution has already been discussed in detail, only two
simple examples are treated herein.

First, consider a flow for which AA = AA(E), m= g = f = 0. That
is, ‘the perturbations are due to a steady-state area variation in the
tube. Integration of equations (1le) and (11f) gives (with

w o2 SEEL () = M) = 0)

ot (x) oy _ M MA(x)

P 21+M A

_ (19)
ApT(x) L, r M Aalx)

D 21 -M A

which define the acoustic waves at station x. The net pressure and ve-
locity perturbations at this section are then

Ap(x)  yM® MA(x)

(20)
Au(x)  -YM AA(x)
a 2 A
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These are the same results as obtained directly from steady-state isen-
tropic flow equations (e.g., ref. 5). Hence, steady flow through a
slightly nonuniform tube can be viewed as the standing wave resulting
from the superposition of unsteady acoustic waves generated by the source
:§E daggg). Note that the perturbations at station x
depend only on the local area perturbatior AA(x) (egs. (20)). 'The ori-
gin of these perturbations may be seen more clearly by considering a tube
wherein the net area perturbation MA(x) cccurs at station €, and an

equal and opposite area perturbation occurs at gB, as indicated in fig-

distribution p =

ure 2(a). The equivalent planar source strength p at £y and Ep is
-puMA(x)/A end puAA(x)/A, respectively. For a subsonic basic flow,

the pressure perturbations at (x,t) are due to the tpt wave originating
from the source at (gA,TA) and the Ap~ wave from the source at (gB,TB)
(fig. 2(b)). For a supersonic basic flow, the pressure perturbation at
(x,t) is due to the Ap*t wave from the source at (gA,TA) and the Ap~

wave from the source at (gA,TK) (rig. 2(c)).

The second example is as follows: Coasider a gas to be stationary
and uniform in a tube of constant area. At time T = 0, volumetric body
forces of unit strength are distributed along the tube from & = 0 +to
€ = 1, and they remain at constant strength thereafter. That is,

f(¢,1) = 0 for all & and 7< O (21a)
£f(e,1) =0 for £<0, £>1
T>0 (21v)
=1 for O0< ¢t <1

The problem is to find the resulting perturbations. These momentum
sources occupy the crosshatched region in ’igure 3{a). The perturba-
tions at a typical point (x,t) arise from -hose portions of the two
characteristic lines through (x,t) which bass through the crosshatched
region. (These portions are darkened in f:gure 3(a) for the two typical
points (x,t) indicated therein.) From equ:tions (11) it is seen that
opt(x,t) is positive and is proportional tc¢ the length of the downstream
propagating characteristic intersecting the crosshatched ares. Also,
Ap~(x,t) is negative and is proportional tc the length of the upstream
propagating characteristic intersecting the crosshatched area. As a re-
sult, each of the numbered regions in figure S(b) has a different ex-
pression for the local net pressure perturtation. The pressure distri-
bution in the tube at times t = t' and t = t" 1s indicated in fig-
ures 3(c) and (d). The solution is antisyrmetric sbout x = 1/2. This
type of approach is applicable for finding perturbations induced by im-
pulsive application of a magnetic field to a conducting field flowing
through a uniform tube.
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Basic Flow Containing a Single Discontinuity

Consider a basic flow consisting of two regions, 1 and 2, separated
by a discontinuity moving with velocity w (fig. 4(a)). The discontinu-
ity may be a shock wave, contact surface, flame front, and so forth. The
flow in regions 1 and 2 is assumed to be perturbed by mass, momentum, and
neat sources. The problem is to find the perturbation at a typical point
(x,t).

The net perturbation at any point is found by summing the contribu-
tion of all the elemental sources influencing the point. The sources
contributing to a typical point in region 2 lie along the characteristics
noted in figures 4(b) and (c) for the basic flows indicated therein.
These characteristics are found in the following way. First, the down-
stream and upstream propagating acoustic characteristics and the particle
path characteristic are drawn through (x,t). These are lines a, b, and
¢, respectively. These characteristics intersect the discontinuity at
points B and C. All the possible characteristic lines in regions 1 and
2 which terminate at points B and C are then drawn.® This gives the ad-
ditional characteristic lines used 1n figures 4(b) and (c). The physical
significance of these lines 1s as follows. The sources along lines a, b,
and ¢ contribute directly to the perturbation at (x,t) in the manner dis-
cussed in the previous sections. The sources along linexd generate a
downstream propagating acoustic wave which arrives at (tg,7). The lat-

ter is deslgnated Ap; B This interascts with the discontinuity and
J
generates a reflected wave (designated Apé B) which propagates along
b4

line b so as to arrive at (x,t). Similarly, the sources along lines e,
f, and j each generate a disturbance at point B which interacts with the
discontinuity to contribute to the upstream propagating acoustic wave
Apé,B. The sources along g, h, i, and k generate a disturbance at point
¢ which interacts with the discontinuity so as to contribute to the en-
tropy perturbation at point C in region 2 (ASE,C)f which then propagates

along line C so as to arrive at (x,t).

The ratio of the generated wave (at a discontinuity) to the incident
wave is termed a "transfer function" herein. Acoustic reflection and
transmission coefficients are special cases. The numerical value of the
transfer function depends on the nature of the incident wave, the gener-
ated wave, and the discontinuity. Transfer functions for various situa~
tions are glven in appendix C. For example, the following transfer func-
tions must be known at point B in figure 4(b) in order to compute the
perturbation at (x,t): (APE,B/Pz)/(A@E,B/Pz)’ (APQ,B/Pz)/(A@i,B/Pl)’

- . . - -
and (A@Z,B/pz)/(ésl,B/cv,l) The net perturbation APB,B/pZ is the sum

3p. 220 of ref. 12 gives all the possibilities.
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of the contributions from the three incide it waves noted in the denom-
inators of the latter three transfer functions.

Formulas for the characteristic lines and int

figures 4(b) and (c) are given as follows.
chosen so that the discontinuity goes through the origin.

Line a:

Line Db:

Line c:

Line d:

Line e:

Line f:

Line j:

Point B:

Point C:

E = x - (u2 +as)(t - 1)
= £, (1)
£ =x- (up - a)(t - 1)

§b(7)

£ =x - ux(t - 1)

£.(7)

£ = &g - (ug + a5) (7 - 71)

EQ(T)
£ = € - (ul - 31)(TB - T)
£ (1)

€= tg - u(rg - 1)

= Ep(T)
€= tg - (u +89)(rg - 1)
g;5(7)

X - (uz - az)t
tp = [w- (up - a5) ]w

w(x - ust)

il

gc W"‘uz

T

Tc

H

Hi

ersection points in

The coordinate system is

t - Bx -
T (t)

t - Bx:-

T (€)

¢ - o -

7. (€)

B - 653
TB - (EB

5 - (&g

B - }53
r5(¢)

£)/ (uo + azﬂ (22a)
)/ - ag)] (220)
§)/ug] (22c)

- g)/(u24-a2ﬂ (224)

£)/ (uy - o) (z2e)
- g)/gq (22r)

- £/ + )] (228)

x - (up - a5)t

w - (up - ag)

X - uzt
W= U

(22n)

(221)

The equations for lines g, h, i, and k are :ound from the equations for
lines d, e, £, and j by replacing the subsc:'ipt B with the subscript C.

The perturbations at (x,t), in figure -.(b), can now be expressed
Use the following notation for tle inteprals appearing in
equations (12a) and (12b):

formally.
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Yo QE(EJT) fz(é;T)]
h, = — [ £, da 238
2,8, 2pg /x Hp(8,7) + T3 ) S e (<) ©  (23a)

) qp (&,7) fl(e,r)]
I = w, (&,7) + - dt (23Db)
bt /’ * {epth "1 de=g (1)

and so forth. The pressure perturbations at (x,t) can then be written
(from egs. (12) and fig. 4(v))

AP-E(X;t) t
—'—
T = (?2’§a) (24a)

Apo(x,t) Ap, /P
g =(Iég)t +—L*—EB/2(I;§)B+
Py 5/ APZ,B/PZ d

Ap7 /P 5 Op3 p/P B
2,8/ Pe (11 : ) b, SPapte o 1 / [ql(g,f)] L, ar
Apl,B/pl 1, B/cv 1 \CyPHy /. =ty

(24v)
The entropy perturbation at (x,t) is
Aso(x t) As
AN 2,C
T dT z24c
o + T pT)Z/ [az(6,)] ¢ (24c)

where

As Aso /ey 2 T As,, ofc _ e
c2 - +C - I;:E ) i ¥ . @dvgh) ¥
2
Vv, APZ,C/PZ g -0

/c
2 ¢ v,2
Bsy ofey,1 (@ pT);L / [ql(g T)]é £y

The net pressure, velocity, density, and temperature perturbations at
(x,t) can then be found from equations (11a) to (114).

o APy olPy
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The expressions for the perturbations at (x,t) in figure 4(c) re-
quire two additional terms because of charscteristic lines J and k. The
perturbations at a point in region 1 are fcund in a similar fashion.

As an example, consider the propagaticn of a shock wave in a duct
having small area variations.
! T This problem has been discussed,
! 2 _Sh k from other viewpocints, in ref-
A - ocC ;
()n ) ersnces 6 to 8. The wave dia-
gram for obtaining the pertur-
/ b | bations behind the shock (region

//9//‘ C/ @Q?,TZ?) 2) is indicated in sketch (g).

Th: fluid in region 1 is assumed
////El//

to be uniform and at rest so
(ékj T ) that no disturbances originate
' C in that region. Thus, with
x,€ M o= M(E), m=q=Ff =0, and
M(-») = 0, equations (24a) and
(24b) give

Y

(g)

+
Apz(x}t) _ I+ t -YzMz AA(X)
= Z;Ea

o o T ETTE) A (252)

00

Apg(x,t) (_ )’0 Apz,B/P2 <I+ )”B

Py 2,8, 0 /_sz)B/pZ 2,84

M [AA(x) M(5’13)] 4p7 p/P2 [ v Mo AA(EB)] (250)
CEE-MTAT T TR oy BT+ 10) TR ob

- + . .
where (ApZ)B/pZ)/(Apng/pz) is found from eqiation (Cl0a). The entropy
perturbation at (x,t) is found by evaluating equation (2%5a) at (EC,TC>,
which gives Apg C/pE’ and multiplying by th: transfer function
3
(Asg)c/cng)/(épg)c/pg), as given by equatior (ClOb). The present solu-
tion is in agreement with the previous treatiients of this problem.

Basic Flow Containing Centered Jiscontinuities

Basic flows which contain a number of discontinuities, but are uni-
form between these discontinuities, can be t-eated by further extending
the methods of the previous sections. In th: Present section, examples
are considered wherein the discontinuities a-e centered at x = 0, t=0.
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The first example is that of a piston starting impulsively from
rest and moving with uniform velocity Uy thereafter (fig. 5). The
fluid in the tube is initially at rest (region 1). A shock is generated
such that the fluid between the piston and the shock moves with a basic
velocity equal to that of the piston (i.e., u; = up). The fluid in
region 2 is assumed to be perturbed by mass, momentum, and heat sources,
and the resulting perturbations are desired. No sources are assumed in
region 1. The characteristics influencing a typical point in region 2
are indicated in figure 5(b). There are an infinite number of charac-
teristic line segments due to successive wave reflections at the shock
and piston. The expressions for the pressure perturbation at (x,t) are
of the form:

+ . -
Apz(X,Jb) (+ >t AP-E,A/PZ < _ )TA APZ,E/pZ [( + )TE ]
2~ _ [t + I + —=2= 2 (1 + o
-7 + 2
P2 285 )z G T A AN > &

i

A F
(262)
- - +
Apz(xyt) _ t Apz B/pz + TB Apg,D/Pz _ )
—~—§-——— = 12’§ + 2711"7—~ IZ,@ + Z:jf———— I2,§ + ...
2 /e, \OPz p/Po afy  2pp p/Pp g/,
(26p)

The entropy perturbation can be found by evaluating equation (26a) at
point C (so as to have Apg C) and then utilizing equation (ClOb).
2

4

Since the piston moves with constant Velocity,+ the reflection co-
efficient at the piston ((A@E,A/PZ)/(APE,A/PZ)i (APE,D/pZ)/(A@Z,D/PZ)’
etc.) equals 1 (eq. (C5)). The reflecEion coefficient at the shock
((Apé,B/pZ)/(APE,B/IJZ)’ (AP-Z,E/PZ)/(APE,E/pZ)’ etc.) is zero for
M, = us/al =1 (eq. (Cloa)). For ¥ mnear 1.4, it is small for all
values of M. In the latter cases, only the first few terms are re-
quired in equations (26). Figure 5(c) indicates the characteristic
lines which are considered when the reflection coefficient at the shock
is essentially zero.

4If the piston velocity has small nonuniformities Aup, the problem
can be treated as the superposition of the constant u, case plus the
. o + _
caie wherein pressure waves of magnitude APZ,A/PZ = Yﬂmp)A/az,
APZ,D/pZ = TAMp,D/aZ’ etc. are generated at points A, D, F, . . .. The

latter follow from the acoustic relations.
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The piston-driven shock problem was treated in reference 6, from
another viewpoint, to obtain the effect of small variations of piston
velocity and the effect of a small linear :irea variation. The effect
of an arbitrary area variation (e.g., wall boundary-layer effect), as
well as arbitrary heat and momentum addition, can be treated by the
present method.

The second example is the determination of nonuniformities in shock
tubes due to unsteady wall boundary-layer sction. This problem was
treated in references 2 and 3, and the soliution is summarized herein.
Let regions 1 and 4 be the low- and high-pressure sections of a shock
tube (fig. 6(a)). When the diaphragm breals, a shock wave moves into
region 1L with velocity Uy while an cxpansion wave (assumed to have
negligible thickness) propagates into regicn 4 with velocity -a,. A
contact surface separates the shock compressed gas (region 2) from the
expanded gas (region 3). Because of the fluid motion relative to the
wall, a boundary layer develops along the wall between the expansion
wave and the shock as indicated in figure 6(b). The problem is to find
the perturbations (due to the boundary layer) at a typical point in
repion 2. The characteristics considered in references 2 and 3 are in-
dicated in figure 6(c). The pressure pertirbation at (x,t) ic then found
fmm(hymepmmmtmm%km)

+
opt(x,t) + 0 Mta/ee [ \TA % A/Pe [, Vi
IR L SV R B S )
o a TA pZJA Py e TE pS,A P3 d TD
- - +
Ap(x,t) -\t oz w/re|fs \'B s w/ps (. \Tp
— = |I. Siwe oy nad | ESG o= I, , +
Po 25y T ApZ,B/pZ ’>f TF APZJF/Pg 75h T
+
&p% w/Pe (4 \'F
—rl e (g (27b)
A@+ /p 3,8 T
3,7 ¥2 &%

Tne bracketed term on the right side of equittion (27b) equals Apg B/pZ
2

and may be found by evaluating equation (27:1) at point B. The entropy
verturbation at (x,t) is found by evaluating equation (27a) at point C
and applying equation (ClOb). The source di.stribution in the integrals
of equations (27) is given by

Hp = Polvp/A
(28)

Hz p51v5/A
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where v, and Vv are the normal velocities (positive when directed
inward) at the outer edge of the boundary layer in regions 2 and 3, re-
spectively (as discussed in connection with eq. (2)). These velocities
have the form

(8,7) = —=
volE,T) = z;;;—j—g;ﬁg (29a)
Kz
vL(E,7) = (29p)

N
(a T + &) 3

where Ko and Kz are constants and N = 1/2 or 1/5 for wholly laminar

or wholly turbulent boundary layers, respectively (refs. 2, 9, and 10).b
By using these forms, the integrals in equations (27a) and (27b) are
readily eveluated. A discussion of the resulting shock-tube nonuniform-
ities 1s given in references 2Z and 3.

The linearized characteristic method developed in reference 4 is an
alternate method for determining shock-tube nonuniformities (see discus-
sion following eqgs. (18)). However, the source distribution in reference
4 was based, in effect, on f(&,7) (obtained by averaging the boundary-
layer wall shear across the tube cross section) and q(&,7) (obtained by
averaging the heat transfer at the wall and the dissipation within the
boundary layer) as opposed to the use herein of u(&,t) (i.e., effective
area change due to boundary layer). Since F£(&,7) introduces an anti-
symmetric wave pabtern (with respect to sign), the results of reference
4 differ by more than just a factor of proportionality from the results
of references 2 and 3 (particularly with regard to the perturbations near
the contact surface). This point is discussed further in references &2
and 3. For the case of relatively thin wall boundary layers, 1t 1s clear
that the source distribution used in references 2 and 3 is the correct
one. The viewpoint of reference 4 may have some validity, however, when
the boundary layver spans the entire tube cross section (provided the
proper boundary-layer theory is used to obtain the wall shear, heat
transfer, and disscipation and provided the averaged perturbations are
sufficiently small to justify a linearized approach). The authors of
reference 4 have extended their work, and the results are glven in ref-
erence 11.

The flow resuliing when a weak deflogration is initiated at the
closed end of o tube is ansther cxample of a basic flow containing

The exproncion for "’}i(i;T) is somewhat In error because of neglect
Of The Cinit: width of the expansion wave and because of the presence of
o Ly from region 2, at the wall belween the diaphragm location
(oo = 0} vl vhe contani nurface (cee rels 10}, Une ol 2. (20b) coonme

3 : / PR v - 1 e
coeovaatoapnones (exoopt, possibly, Uor strong shocks ).



centered discontinuities (see p. 225 of re’. 12). The basic flow con-
sists of a shock wave, followed by a plana: flame front, both propagat-
ing with constant speed (fig. 7). The shock induces a velocity wusp

in region Z. The closed-end boundary cond .tion requires wuz = 0. (For
a given flame, the shock strength is detertined by the boundary condi-
tion uz = 0.) The effect of the wall bowidary layer on the flame and
shock propagation can be treated in a manner similar to the shock-tube
problem. Thus, the source distribution is taken to be p = va/A, where
v is found from boundary-layer theory. Note that the boundary layer in
region 2 is the same as that in region 2 ol the shock tube. However,
since uz = O 1in the present example, the boundary layer in region 3 is
essentially o thermal boundary layer only. The solution of this thermal
boundary layer can be found using the methods of reference 9 provided
the flow across the flame front is assumed uniform (i.e., the boundary
layer from region 2 is neglected). The characteristics contributing to
the perturbations at (x,t) in region 2 are indicated in figure 7(c). It
is assumed therein that the reflection coefficient at the shock is zero
(appropriate for weak shocks). Transfer finctions, for use at a planar
flame front, are derived in appendix C. Tre effect of flame front dis-
tortion and the corresponding changes in tte mean flame speed are not
considered in the present formulation. The effect of temperature and
turbulence level on flame speed is also neglected.

CONCLUDING REMAFKS

A source distribution method has been presented for determining
perturbations due to small unsteady area veriations, mass, momentum, and
heat additions in a uniform (or piecewise tniform) basic one-dimensional
low.

In the present method, the perturbed flow field is decomposed into
three mutually independent wave systems, nzmely (1) upstream propagating
acoustic waves Ap~, (2) downstream propageting acoustic waves Ap+, and
() centropy waves As. The pressure and velocity perturbations at a
given section depend only on the local values of Ap~ and Apt  and are
independent of the local value of As. Howasver, a knowledge of As is
required 1f the local density and temperature perturbations are to be
tound. The present method is compared with the linearized method of
chuaracteristics (e.g., ref. 4) in the paragraph following equations (18).
The linearized method of characteristics employs AP, AQ, and As as
hie dependent variables. But AP and AQ are not independent of As
or nonisentropic flows. Hence, AP, AQ, anl As do not form a system
ol three mutually independent waves as do Apt, Ap™, and As.

L
i



=
3

Several alternate viewpoints can be used to solve the problems con-
cidered in the body of the report (e.g., refs. 4, 6, 7, and 8). It is
hoped that the present elementary discussion adds additional physical
insight for these flows.

Lewls Regearch Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 6, 1939
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APPENDIX A

SYMBOLS
A cross-sectional area of tube
A,B,C, points on characteristic lines
a speed of sound
a,b,c,. characteristic lines
p specific heat at constant pressure
c,, specific heat at constant volume
f body force, per unit volume, acting in +x direction
I see egs. (23a) and (23b)
1 perimeter of tube cross gection
M Mach number, u/a
m mass addition, per unit volune, rer unit time
P,Q Riemann variables (egs. (13d) and (13e))
e pressure
q heat addition, per unit volwie, per unit time
R gas constant
s entropy
T temperature
t time
u velocity in +x direction
v velocity (normal to wall) of fluid particle at wall, or

at outer edge of thin bouncary layer (positive inward)

w velocity of discontinuity



X dietance along tube, taken in stream direction
T ratio of specific heats

A prefix denoting perturbation

A (e,B)of (eT)y

! equivalent mass addition, per unit volume, per unit time
£ distance along tube, defining source point

o) density

T time, defining source point

Subscripts:

1,2,3,... regions

A,B,C,... points on characteristic lines

t flame front

5 shock wave

Superscripts:

()t perturbation associated with acoustic wave propagating in
+x direction

() perturbation associated with acoustic wave propagating in
-x direction

(—) used with u, g, and £ to indicate source strength defined
on a per unit cross-sectional area basis

Special Notation:

By )
:;(C eq. (13f)
pL) cq. (15g)

Dt



pressure perturbation at po‘nt A, region 2, associated
with acoustic wave propageting in +x direction
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APPENDIX B

ELEMENTAL SOURCE SOLUTION FOR M > 1

The wave due to an elemental source in a subsonic stream was derived
in the body of the report. The case of an elemental source in a super-
sonic strszam is treated herein.

Planar mass, momentum, and heat sources are placed at x = 0 at
t = 0 and remain at constant strength thereafter. The resulting t-x
diagram, for M > 1, is shown in sketch
(h). Line a is a downstream propagat-
ing acoustic wave, line b is a contact
surface, line c¢ is an upstream propagat-
ing acoustic wave (which is swept down-
stream, since M > 1), and line x = 0
is a line across which discontinuities
alsc originate. The perturbations are
constant in each of regions 2 to 4.
These are found by considering the per-
turbations arising from each of the
above-mentioned lines.

Line &: The acoustic relations give

Apo = paAuZ
(B1)
Npo = £ Au,
5 TG
Line b: Since this line 1s a contact surface,
Apz = App
(B2)
Auz = Au,
Line 2: From acoustic relations,
Ao - Apy = —pa(AuB - Au4)
(B3)
. - )
Doz - Do, = a‘(AM5 Au“)
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Line x = 0: Integration of equations (1) across x = 0 gives
—- N
uApy + pAu4 = MU
wiu, + (1/p)op, = F/o ¢ (B4)
Apy 4oy 3
ul—= -y —| = -
D b PT
Equations (Bl) to (B4) are nine equations :n nine unknowns. The solu-
tions can be written
\
Ap Ap _ = F
D D 2pal(l + M) cpT a
Apy M - § F
4. 1 TP > (B5)
pa(M” - 1) P
Asz _ ADsy _ a
Cy cy cvpuT J

The other perturbations can then be found I'rom equations (Bl) to (B4).

Ncw assume that equal and oppo-
site (vith respect to the previous
example ) planar mass momentum and
heat scurces are placed at x 0
at t = At and remain at constant
strengih thereafter. The t-x dia-
gram is given in sketch (i). The
lines t¢re displaced upward by an
amount At from those in sketch (h).
The perturbations in regions 2', 37,
and 4' are egual and opposite to

(1)
The flow field asso
heat source at x =0, t
in sketches (h) anda (i).

» X those in regions 2, 3, and 4.

ciated with an elenental mass, momentum, and
0 1is found by linearly superposing the flows
The superpositior is indicated in sketch ().
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The perturbations are zero everywhere except between lines a-a', b-b',
and c-c' (since the perturbations in regions 2, 3, and 4 are equal and
opposite to those in regions 2', 3', and 41, respectively). The pertur-
bations between lines a-a' can be written

rpt - - Y ) (—LI + ,_(—% + _F_> (B62)

D 2pall + M cp a
vt apt1oapt
a ~ p Y P

Between lines c-c', the net perturbations are

Ap” 18 -, a I

p = Zpa(M - 1) (“+CPT’a> (B6D)
Au” Ao 1 ApT
a =~ p Y p

Between lines b-b', the nel perturbations are Ap = Au = 0 and

As q

— = (B6C)
Cy cvpuT

po o

o c



y considering the limit as At -+ O, equations (B6) define the perturba-
tiors duc to an elemental planar source at x = 0, t =0 1in a supersonic
stream. These equations differ from those for the M < 1 case (i.e.,
eqs. (9)) only in the terms (1 - M), (M - ..) appearing in the expressions
for Ap~. Use of ll - M’ in equations (10 makes the latter applicable
for both M <1 and M > 1.

It may be of interest to interpret the flow in sketch (h) in terms
of the elemental source solutions. For example, the net pressure per-
turbation at an arbitrary point in region ¢ (see sketch (k)) may be in-
terpreted as consisting of
Lp = Apt + Ap” where Apt  is
the downstream acoustic wave
¢riginating from the source at
t =0, T" = t -Ex/(u + a)]
vhile Ap~ is the upstream
Iropagating acoustic wave orig-
inating from the source at
E=0, T =t -[x/(u - a)].
The entropy perturbation at
(x,t) is equal to the entropy
rerturbation which originated
irom the scurce at £ = O,

1" = t - (x/u). The greater
(k ) generality of the elemental
csource viewpoint 1s illustrated
by considering the source strength at £ = 0 +to vary with time. Then,
the perturbations at any point can be founc¢ directly from equations (B6)

1"

provided the right sides are evaluated at ', t', and 1", respectively.

’, T
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APPENDIX C

TRANSFER FUNCTIONS

In the body of the report it was necessary to know the ratio of the
generated wave to the incident wave when an acoustic wave, or entropy
wave, Impinged on a discontinuity. Such ratios were termed "transfer
functions." The transfer functions for various discontinuities and in-
cident waves are found herein.

Contact Surface

The requirement that pressure and velocity be continuous across a
contact surface leads to (e.g., ref. 2):

Incident wave Api:

Y28
- N -1
‘{ A,Oz Apl/pl _T182 (c1)
/ Apt Beifey - Yer
/ | Y182
2
| i
// APg/Pg _ > (c2)
/ - tpsfp,  THa
A’Dl L 1z + 1
> X T-a
271
(1)
. +
Incident wave Aps:
+
t _ 291/p; 2
Ap rotfo, T YAl (c3)
el vz +1
1%z
Y18z 1
AP%/PZ Tody -
+ = Y.a (Cé)
Spp/e, Y1t

Y231




Constant-Velocity Discontinuity

In this case the velocity of the discontinuity is assumed to be
unperturbed. A piston moving at constant velocity is an example.

&p1/py  opy/p,
—— = =1
to7/py - opE/py

Constant-Pressure Discontinuity

In this case, the pressure at the discontinuity is assumed to be
unperturbed. The open end of a tube i1s an example.

t bp,

ApT/p,  Ap5/p,

- = ; =
Ap, /Py Lpo/p,

-1 (ce)

(0)

Shock-Wave Discontinuity

The derivation of the transfer functicns for this case will be out-
lined. Let Mg = (uS - ul)/al designate the shock Mach number relative
to the fluid in region 1.

————»—(12 ————b—[{s *——)-L“

(p)
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Normal shock relations give

Po ZY'ME - (Y - l)

o1 e (c7a)
z
U.z - Lll 2 MS -1
ap v+ 1 M (c7p)
2z 2 v
S0 = 57 aMg - (v - 1) [ (r + 1)Mg
———— =1n —T 5 (c7c)
Cv Y L(v - 1M+ 2

Taking the differential of equations (C7a) and (c7v), eliminating AMg,

Az _ 1 Op As
and noting -a—£ = = (r = L + = l) yield

1 2 Y pl ? Cys

Ap, AP, as ([ .Oug Ay oy -1 Mg -1 (Apy 1 Osy
bo —Pl =7 l(az -Tal Tr o+l M pl +Y‘_lcv (CB)

where

20y + 1)M2

[zmg - - 1)] (MS + 1)

The differential of equation (c7¢), upon elimination of AMS, yields

Asz - Aﬁl B (Apz Apl>

Z =

- CS
Cyv b2 151 ( )

where
r - )2 - 1)°

M’ [(y -1+ 2]

y:

Use of the acoustic relations YAu*/a = Ap+/p and You /a = -Ap”/p in
equations (C8) and (C9) then yields the following transfer functions:
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Incident wave Apgz
/ Apz' A52 y 2 .
Apé;/pz 2 al -
¥ = T3 (C10a)
Ap,/'p
2 a7z z _z + 1
a1
Apt -
pz Aszllcv Apz/p2 ( )
Lo X X 7 = T + 1 Y Cl0Ob
/ ApoiPy  \Opy/ps
(q)
Incident wave Api:
g _  As
A A4 ; 14201 -L22 N - 1
2p3/py NCTY T I
171 L+ z £
%1
Beafey _ (“vef7e 1 (c11v)
&p7/py £p1/py d

. L Ly aM -0
- - z|1 +
207/ vy, Y+ 1 M

2ot /py oy

(cien)

begle, (AJQ/PB )

apy/ey \as/p,
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Irncident wave As./c @
l/ W

JAYA t07/ e Vi

- T I S Z
/ A’DZ / Asl T’ B l)Mh as (ClS&)
~ 21l 4z
a1

|

Aspfey &pz/ Py
ery l'*(2537€; y (C13b)

S

Planar-Flame-Front Discontinuity

Transfer functions for a planar flame front are derived herein by

assuming:
2 ——»Uz %—»Uf ———J—Ul |
(u)

(1) |:(uf - ul)/al]2 «<1; I:(uf - ug)/ag]2 << 1

(2) The flame speed relative to the gas in reglon 1, up - Uy, 1s
constant

(%) The heat release at the flame per unit mass, per unii cross-
ceciionnl area (denoted Q), 1s constant.

The caouations ol moticon, relative to the flame, are

Continuitly: pl(‘,zf - Ul) = pfj(ur - u;;) (Ci"si)
Momentum: Py = P (C14wm)
Frersy: (z:pT)l + = (OPT)Z (ClLaz)
State Py = pR T p. = p.R.T, (CLéd)
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Assumption (1) is incorporated in equations (Cl4b) and (Cl4c). The dif-
ferential of these equations yilelds, respe:tively (noting assumptions
(2), %.e., A(uf - ul) =0 or Aup= Ay, mnd (3), i.e., &AQ = 0),

i T S S ( Au o sry  Aug (
- - — — - '8 Clba)
PL Py up-up Yy \1oay aYy C ap )
Apy  Apso
P, = D, (Cc15b)
ATy AT
o= AT Cloe
) T, ( )
App Lpy -1\ AT
- = 5 T (c154)
pz pl , 1

where A = (CpT)Z/(CpT)l' Eliminating the density terms between equa-
tions (C15a) and (C15d) yields

YlZ ATl as Y1 Am% Aul
- 1T = o 7. ¥ - T (c1e)
1 1 172 2. 2y
where
Y1 Up = Uy
7 = — -1 -1 (
2 - 00 (L2

But AT /T, = [(rl - l)/Tl](Apl/pl) + (l/T])(Asl/cV}l), so that equation
(C16) can be written

Pp Yi-loe ) mry 2o L ay
Also, from the definition of entropy,
Asp  App App (1- 1o App ATo
= - - - — + e
CVJZ pz Yz 0 T)/ D YZ TZ
4Apy  Tp ATy
= (1 - —_— 4 —
8py 1 Y2 DSy
=Y — - (c18)
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wnere

172 (ro - 1)

Equations (Cl5b), (C17), and (c18) together with the acoustic relations
then yield the following transfer functions:

Incident wave Api :
vy

1 Y1 &2
2p3/py Ty 2
= (c192)
Api/pl 1 +7Z+ Y—l- i@
T2 &1
- +
Aoa/ P =1 + Apl/pl (Cc19v)
A@i7pl SYVEN
ssplev,e 93/2 (C100)
&p7/Py &py /Py
Y1 82
o3/, Py
—_1_—/—'“ = - T a (cz0a)
Apz Pz 1+%Z + Lz
T2 &1
+ -
il =1+ i ki (caob)
+ - ¥ :
Apo/ Py Apo /o,
Dspfcy o rpy /Py
e Tty (czoc)

ro3/ps 0%/ pz
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]

W

H
.

Incident wave Asl:

+ -
Apy/py Ap3/g
Bsyfey, " Bsyfe,
-1 7,
= C21<
-1 T ey ()
142 +-—=-2
Yo &
+
foelovi 1Tz /m (c21v)
Asl7cV)1 A Yy Asqy Cv,l
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(a) Area variation.
(b) Sources affecting point (x,t) for subsonic flow.
(c) Sources affecting point (x,t) for supersonic flow.

Figure 2. - Source distribution method for finding steady
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AT‘ /
(x,7) N )\\\
0 \\\t:?\\ | —>x ¢
(o)
't
8 lr 2
B
7 5
7L 6 3
4 - g

\_O/(d) |

(1) Volumetric body forces (0 < ¢ < 1, © > 0),
(b) Regions having different expressions for local pressure,

c) Pressure distribution
(d) Pressure distribution

Figure 3. - Perturbations
sources in uniform tube
uniform and nonzero for

at time +t = ¢,
at time t = t",

induced by volumetric body force
containing statiorary gas.
OCct<1, 1> 0.

Sources
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fr Discontinuity

N

(a) Basic flow containing discontinuity.

(b) Characteristics contributing to perturbations at (x,t) for
case 0< My <1, 0<Mp<l1l,uy<w<uj +a8ay, u <w. Since
(w - ul)/al < 1, discontinuity moves with subsonic velocity

relative to gas in region 1.

Figure 4, - Characteristics for finding perturbations in flows
containing a discontinuity.
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)

Discontinuity

(¢) Characteristics contributing to pertw-bations at (x,t) for
case 0 < M} <1, 0< My <1, uy +a)] <w, up <w. Since

(w - ul)/al > 1, discontinuity moves wilh supersonic velocity
relative to gas in region 1.

Figure 4. - Concluded. Characteristics fcr finding perturbations
in flows containing a discontinuity.
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Shock
wave
> X,f
'
4 Piston o
x/!
0 /) Shock
, A // b wave
"
£
C
> x
C) (C) ,E

(a) Basic flow at time t = 1t'.
(b) Characteristic diagram.
{¢) Characteristic diagram when refTlection coefficient at

shock is zero.

Figure 5. - Piston-driven shock problem.
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~Diophragm
. /
(a)
‘ rWall boundary layer
n :WM/%%V///// ey
4 ,__,73-),77777:// 77 34//// L7 |

(b)

Contact
4 surface >

-

Expansion
wave

(a) Shock tube before diaphragm rupture.
(b) Flow at time t = t°,
(c) Characteristics makin

s major contribusion to perturbations
at (x,t).

Figure €. - Calculation of nonuniformitie;
in shock tubes.
thickness.

and attenuation
Expansion wave assumed to have negligible
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-
Uz = O Uf —lUp > Us

3 2 I

- Thermal ~Velocity and thermal
' boundary layer / boundary layers
NNNNNNNNNNNNNNNNNNS 77 7.
S u3=0 —> Uy —=Uy [ Us
N 2 |
N V7777777
(b)
i Flame
\ front 2
(x,7) Shock wave
' 3
—> X,g
0 (c)

(a) Basic flow (t = t').

(b) Wall boundary layers.

(c) Characteristics for determining perturbations at (x,t).
Reflection coefficient at shock assumed negligible.

Figure 7. - Determination of perturbations due to wall boundary

layer when planar deflagration is initiated at closed end.
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